Targeting hyperactivated DNA-PKcs by KU0060648 inhibits glioma progression and enhances temozolomide therapy via suppression of AKT signaling

نویسندگان

  • Tian Lan
  • Zitong Zhao
  • Yanming Qu
  • Mingshan Zhang
  • Haoran Wang
  • Zhihua Zhang
  • Wei Zhou
  • Xinyi Fan
  • Chunjiang Yu
  • Qimin Zhan
  • Yongmei Song
چکیده

The overall survival remains undesirable in clinical glioma treatment. Inhibition of DNA-PKcs activity by its inhibitors suppresses tumor growth and enhances chemosensitivity of several tumors to chemotherapy. However, whether DNA-PKcs could be a potential target in glioma therapy remains unknown. In this study, we reported that the hyperactivated DNA-PKcs was profoundly correlated with glioma malignancy and observe a significant association between DNA-PKcs activation and survival of the glioma patients. Our data also found that inhibition of DNA-PKcs by its inhibitor KU0060648 sensitized glioma cells to TMZ in vitro. Specifically, we demonstrated that KU0060648 interrupted the formation of DNA-PKcs/AKT complex, leading to suppression of AKT signaling and resultantly enhanced TMZ efficacy. Combination of KU0060648 and TMZ substantially inhibited downstream effectors of AKT. The in vivo results were similar to those obtained in vitro. In conclusion, this study indicated that inhibition of DNA-PKcs activity could suppress glioma malignancies and increase TMZ efficacy, which was mainly through regulation of the of AKT signaling. Therefore, DNA-PKcs/AKT axis may be a promising target for improving current glioma therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma.

Glioblastoma multiforme (GBM) is the most lethal of brain tumors and is highly resistant to ionizing radiation (IR) and chemotherapy. Here, we report on a molecular mechanism by which a key glioma-specific mutation, epidermal growth factor receptor variant III (EGFRvIII), confers radiation resistance. Using Ink4a/Arf-deficient primary mouse astrocytes, primary astrocytes immortalized by p53/Rb ...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair.

We have already reported that epidermal growth factor receptor/phosphatidylinositol 3-kinase/AKT signaling is an important pathway in regulating radiation sensitivity and DNA double-strand break (DNA-dsb) repair of human tumor cells. In the present study, we investigated the effect of AKT1 on DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and DNA-dsb repair in irradiated non...

متن کامل

Integrin αVβ3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair

Integrins have been suggested as possible targets in anticancer therapy. Here we show that knockdown of integrins αVβ3, αVβ5, α3β1 and α4β1 and pharmacological inhibition using a cyclo-RGD integrin αVβ3/αVβ5 antagonist sensitized multiple high-grade glioma cell lines to temozolomide (TMZ)-induced cytotoxicity. The greatest effect was observed in LN229 cells upon integrin β3 silencing, which led...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016